Dissipation of the Proton Electrochemical Potential in lntact Chloroplasts'

نویسندگان

  • John N. Nishio
  • John Whitmarsh
چکیده

The potency of various uncouplers for collapsing the lightinduced pH gradient across thylakoid membranes in intact chloroplasts was investigated by time-resolved optical spectroscopy. The thylakoid transmembrane pH gradient (ApH) was monitored indirectly by measuring the rate of cytochrome (Cyt) f reduction following a light flash of sufficient duration to create a sizable ApH. The results show that the rate of Cyt f reduction i s controlled in part by the internal pH of the thylakoid inner aqueous space. At pH values from 6.5 to 8.0, the Cyt f reduction rate was maximal, whereas at lower pH values from 6.5 t o 5.5 the reduction rate decreased to 25% of the maximal rate. The ability of three uncouplers, nigericin, carbonylcyanide m-chlorophenylhydrazone, and gramicidin, to accelerate the rate of Cyt f reduction was determined for intact chloroplasts isolated from spinach (Spinacia oleracea). The efficacy of the uncouplers for collapsing the ApH was determined using the empirical relationship between the ApH and the Cyt f reduction rate. For intact chloroplasts, nigericin was the most effective uncoupler, followed by carbonylcyanide m-chlorophenylhydrazone, which interacted strongly with bovine serum albumin. Gramicidin D, even at high gramicidin:chlorophyll ratios, did not completely collapse the pH gradient, probably because it partitions in the envelope membranes and does not enter the intact chloroplast.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Millisecond kinetics of ATP synthesis driven by externally imposed electrochemical potentials in chloroplasts.

We have used rapid mixing and quenching techniques to measure the initial ATP synthesis rates and the duration of the ATP synthetic capacity derived from artificially imposed proton gradients and valinomycin-mediated K+ diffusion potentials in chloroplasts. The initial rate of ATP synthesis driven by a K+ diffusion potential was 10-fold slower than that driven by an acid-base transition of equi...

متن کامل

Electrochemical Oxidation of Sulfamethazine on Multi-Walled Nanotube Film Coated Glassy Carbon Electrode

The electrochemical oxidation of sulfamethazine (SMZ) has been studied at a multi-walled carbon nanotubes modified glassy carbon electrode (MWCNT-GCE) by cyclic voltammetry. This modified electrode (MWCNT-GCE) exhibited excellent electrocatalytic behavior toward the oxidation of SMZ as evidenced by the enhancement of the oxidation peak current and the shift in the anodic potential to less posit...

متن کامل

Electrochemical Study of Hydrogen Adsorption/Reduction (HAR) Reaction on Graphene Oxide as Electrocatalyst for Proton Exchange Membrane Fuel Cells

In the current work, graphene oxide (GO) samples were prepared at room temperature from graphite flakes using a modified Hummer's method to produce metal-free electrocatalysts. The effect of the duration of the oxidation process on the structural, chemical and physical characteristics of the GO samples was evaluated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ...

متن کامل

An overview of organic/inorganic membranes based on sulfonated poly ether ether ketone for application in proton exchange membrane fuel cells

Nowadays, proton exchange membrane fuel cells (PEMFCs) are the most promising green energy conversion devices for portable and stationary applications. Traditionally, these devices were based onperfluoro-sulfonic acid electrolytes membranes, given the commercial name Nafion. Nafion is the mostused electrolyte membrane till now; because of its high electrochemical properties su...

متن کامل

Mimicking bacterial photosynthesis

Photosynthesis in bacteria involves absorption of light by antenna chromophores and transfer of excitation to reaction centers, which convert the excitation energy to electrochemical potential energy in the form of transmembrane charge separation. A proton pump uses this stored energy to generate proton motive force across the membrane, which in turn is used to synthesize adenosine triphosphate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002